Advanced manufacturing

The Advanced Technology Institute (ATI) is home to two electrospinning systems, a formulation design and testing small rig and a large-area rig capable of producing nanofibres in any desired orientation, up to areas as large as 0.8 x 1.2 m.


Polymer nanofibers can make composites tougher and stronger and can provide excellent pollution and viral filtration. Nanofibre mats make superior tissue scaffolds and can be used to make ultralight sponges, with massive surface areas. Polymer molecules are forced into alignment in nanofibers and thus can lead to significant electrical activity, eg. Piezoelectricity, for use in energy harvesting and sensing applications. Nanofibre mats are flexible, breathable and can transform a hydrophobic polymer into a hydrophilic film.

Selected publications

Forouharshad, M., King, S. G., Buxton, W., Kunovski, P. and Stolojan, V. Textile-Compatible, Electroactive Polyvinylidene Fluoride Electrospun Mats for Energy Harvesting. Macromolecular Chemistry and Physics.

King, S. G., Castaldelli, E., McCafferty, L., Silva, S. R. P. and Stolojan, V. 2018a. Micro-Centrifugal Technique for Improved Assessment and Optimization of Nanomaterial Dispersions: The Case for Carbon Nanotubes. Acs Applied Nano Materials, 1, 6217-6225.

King, S. G., McCafferty, L., Stolojan, V. and Silva, S. R. P. 2015. Highly aligned arrays of super resilient carbon nanotubes by steam purification. Carbon, 84, 130-137.

King, S. G., Stolojan, V. and Silva, S. R. P. 2017. Large area uniform electrospun polymer nanofibres by balancing of the electrostatic field. Reactive and Functional Polymers.

King, S. G., Terrill, N. J., Goodwin, A. J., Stevens, R., Stolojan, V. and Silva, S. R. P. 2018. Probing of polymer to carbon nanotube surface interactions within highly aligned electrospun nanofibers for advanced composites. Carbon, 138, 207-214.

Pozegic, T. R., King, S. G., Fotouhi, M., Stolojan, V., Silva, S. R. P. and Hamerton, I. 2019. Delivering interlaminar reinforcement in composites through electrospun nanofibres. Advanced Manufacturing-Polymer & Composites Science, 5, 155-171.

US Patent Application for An Electrospinning Device and Configuration Method (Application #20180223451).