Aidas Baltusis
Academic and research departments
Faculty of Engineering and Physical Sciences, Advanced Technology Institute.About
My research project
Compressed Sensing for Analysing Semiconductor WafersDeveloping in-line PL quantitative imaging for compound semiconductors using a DMD-based compressed sensing system
Supervisors
Developing in-line PL quantitative imaging for compound semiconductors using a DMD-based compressed sensing system
My qualifications
Including Industrial Placement at TOPTICA Photonics
ResearchResearch interests
- Device Characterisation
- Compressed Sensing
- Photoluminescence Imaging
Research collaborations
National Physical Laboratory
Research interests
- Device Characterisation
- Compressed Sensing
- Photoluminescence Imaging
Research collaborations
National Physical Laboratory
Publications
We propose and investigate a novel, rapid method for contactless spatial imaging of minority charge carrier lifetimes based on compressed sensing. The proposed method demonstrates an order of magnitude potential increase in imaging speeds. (C) 2021 The Author(s)
Charge carrier lifetime is a key property of semiconductor materials for photonic applications. One of the most established methods for measuring lifetimes is time-resolved photoluminescence (TRPL), which is typically performed as a single-point measurement. In this paper, we demonstrate a new time-correlated single photon counting method (TCSPC) for TRPL microscopy, for which spatial information can be achieved without requiring point-by-point scanning through the use of a compressed sensing (CS) approach. This enables image acquisition with a single pixel detector for mapping the lifetime of semiconductors with high repeatability. The methodology for signal acquisition and image reconstruction was developed and tested through simulations. Effects of noise levels on the reliability and quality of image reconstruction were investigated. Finally, the method was implemented experimentally to demonstrate a proof-of-concept CS TCSPC imaging system for acquiring TRPL maps of semiconductor materials and devices. TRPL imaging results of a semiconductor device acquired using a CS approach are presented and compared with results of TRPL mapping of the same excitation area measured through a point-by-point method. The feasibility of the methodology is demonstrated, the benefits and challenges of the experimental prototype system are presented and discussed.
On-chip lasers are a key component for the realization of silicon photonics. The performance of silicon-based quantum dot (QD) devices is approaching equivalent QDs on native substrates. To drive forward design optimization we investigated the temperature and pressure dependence of intrinsic and modulation p-doped 1.3 μm InAs dot-in-well (DWELL) laser diodes on on-axis silicon substrates for comparison with devices on GaAs substrates. The silicon-based devices demonstrated low room temperature (RT) threshold current densities ( Jth ) of 192 Acm−2 (538 Acm−2 ) intrinsic (p-doped). Intrinsic devices exhibited temperature stable operation from 170-200 K. Above this, Jth increased more rapidly due to increased non-radiative recombination. P-doping increased the temperature at which Jth(T) started to increase to 300 K with a temperature insensitive region close to RT, but with a higher Jth . A strong correlation was found between the temperature dependence of gain spectrum broadening and the radiative component of threshold Jrad(T) . At low temperature this is consistent with strong inhomogeneous broadening of the carrier distribution, which is more pronounced in the p-doped devices. At higher temperatures Jth increases due to homogeneous thermal broadening coupled with non-radiative recombination. Hydrostatic pressure investigations indicate that while defect-related recombination dominates, radiative and Auger recombination also contribute to Jth .