Gianmarco Addari

Dr Gianmarco Addari


Postgraduate Research Student

Publications

Gianmarco Addari, Jean-Yves Guillemaut (2019)Towards Globally Optimal full 3D reconstruction of scenes with complex reflectance using Helmholtz Stereopsis, In: CVMP '19: Proceedings of the 16th ACM SIGGRAPH European Conference on Visual Media Production8pp. 1-10 Association for Computing Machinery (ACM)

Many 3D reconstruction techniques are based on the assumption of prior knowledge of the object's surface reflectance, which severely restricts the scope of scenes that can be reconstructed. In contrast, Helmholtz Stereopsis (HS) employs Helmholtz Reciprocity to compute the scene geometry regardless of its Bidirectional Reflectance Distribution Function (BRDF). Despite this advantage, most HS implementations to date have been limited to 2.5D reconstruction, with the few extensions to full 3D being generally limited to a local refinement due to the nature of the optimisers they rely on. In this paper, we propose a novel approach to full 3D HS based on Markov Random Field (MRF) optimisation. After defining a solution space that contains the surface of the object, the energy function to be minimised is computed based on the HS quality measure and a normal consistency term computed across neighbouring surface points. This new method offers several key advantages with respect to previous work: the optimisation is performed globally instead of locally; a more discriminative energy function is used, allowing for better and faster convergence; a novel visibility handling approach to take advantage of Helmholtz reciprocity is proposed; and surface integration is performed implicitly as part of the optimisation process, thereby avoiding the need for an additional step. The approach is evaluated on both synthetic and real scenes, with an analysis of the sensitivity to input noise performed in the synthetic case. Accurate results are obtained on both types of scenes. Further, experimental results indicate that the proposed approach significantly outperforms previous work in terms of geometric and normal accuracy.

Gianmarco Addari, Jean-Yves Guillemaut (2019)An MRF Optimisation Framework for Full 3D Helmholtz Steropsis, In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Institute for Systems and Technologies of Information, Control and Communication (INSTICC)

Accurate 3D modelling of real world objects is essential in many applications such as digital film production and cultural heritage preservation. However, current modelling techniques rely on assumptions to constrain the problem, effectively limiting the categories of scenes that can be reconstructed. A common assumption is that the scene’s surface reflectance is Lambertian or known a priori. These constraints rarely hold true in practice and result in inaccurate reconstructions. Helmholtz Stereopsis (HS) addresses this limitation by introducing a reflectance agnostic modelling constraint, but prior work in this area has been predominantly limited to 2.5D reconstruction, providing only a partial model of the scene. In contrast, this paper introduces the first Markov Random Field (MRF) optimisation framework for full 3D HS. First, an initial reconstruction is obtained by performing 2.5D MRF optimisation with visibility constraints from multiple viewpoints and fusing the different outputs. Then, a refined 3D model is obtained through volumetric MRF optimisation using a tailored Iterative Conditional Modes (ICM) algorithm. The proposed approach is evaluated with both synthetic and real data. Results show that the proposed full 3D optimisation significantly increases both geometric and normal accuracy, being able to achieve sub-millimetre precision. Furthermore, the approach is shown to be robust to occlusions and noise.