Dr Jamal Miah

Engineering Doctorate student

Academic and research departments

Centre for Environment and Sustainability.


Miah Jamal, Sadhukhan Jhuma, Griffiths A, McNeill R, Halvorson S, Schenker U, Espinoza-Orias N. D., Morse S, Yang A (2017) A framework for increasing the availability of life cycle inventory data based on the role of multinational companies,International Journal of Life Cycle Assessment23pp. 1744-1760 Springer Verlag
Purpose The aim of the paper is to assesses the role and effectiveness of a proposed novel strategy for Life Cycle Inventory (LCI) data collection in the food sector and associated supply chains. The study represents one of the first of its type and provides answers to some of the key questions regarding the data collection process developed, managed and implemented by a multinational food company across the supply chain. Methods An integrated LCI data collection process for confectionery products was developed and implemented by Nestlé, a multinational food company. Some of the key features includes: (1) management and implementation by a multinational food company, (2) types of roles to manage, provide and facilitate data exchange, (3) procedures to identify key products, suppliers and customers, (4) LCI questionnaire and cover letter, and (5) data quality management based on the pedigree matrix. Overall, the combined features in an integrated framework provides a new way of thinking about the collection of LCI data from the perspective of a multinational food company. Results The integrated LCI collection framework spanned across five months and resulted in 87 new LCI datasets for confectionery products from raw material, primary resource use, emission and waste release data collected from suppliers across 19 countries. The data collected was found to be of medium-to-high quality compared with secondary data. However, for retailers and waste service companies only partially completed questionnaires were returned. Some of the key challenges encountered during the collection and creation of data included: lack of experience, identifying key actors, communication and technical language, commercial compromise, confidentiality protection, and complexity of multi-tiered supplier systems. A range of recommendations are proposed to reconcile these challenges which include: standardisation of environmental data from suppliers, concise and targeted LCI questionnaires, and visualising complexity through drawings. Conclusions The integrated LCI data collection process and strategy has demonstrated the potential role of a multinational company to quickly engage and act as a strong enabler to unlock latent data for various aspects of the confectionery supply chain. Overall, it is recommended that the research findings serve as the foundations to transition towards a standardised procedure which can practically guide other multinational companies to considerably increase the availability of LCI data.
Miah J, Griffiths A, McNeill R, Halvorson S, Schenker U, Espinoza-Orias N, Morse S, Yang A, Sadhukhan J (2017) Environmental management of confectionery products: Life cycle impacts and improvement strategies,Journal of Cleaner Production177pp. 732-751 Elsevier
This paper presents the first environmental life cycle analysis for a range of different confectionery products. A proposed Life Cycle Assessment (LCA) approach and multi-criteria decision analysis (MCDA) was developed to characterise and identify the environmental profiles and hotspots for five different confectionery products; milk chocolate, dark chocolate, sugar, milk chocolate biscuit and milk-based products. The environmental impact categories are based on Nestle's EcodEX LCA tool which includes Global Warming Potential (GWP), Abiotic Depletion Potential (ADP), ecosystems quality, and two new indicators previously not considered such as land use and water depletion. Overall, it was found that sugar confectionery had the lowest aggregated environmental impact compared to dark chocolate confectionery which had the highest, primarily due to ingredients. As such, nine key ingredients were identified across the five confectionery products which are recommended for confectionery manufacturers to prioritise e.g. sugar, glucose, starch, milk powder, cocoa butter, cocoa liquor, milk liquid, wheat flour and palm oil. Furthermore, the general environmental hotspots were found to occur at the following life cycle stages: raw materials, factory, and packaging. An analysis of five improvement strategies (e.g. alternative raw materials, packaging materials, renewable energy, product reformulations, and zero waste to landfill) showed both positive and negative environmental impact reduction is possible from cradle-to-grave, especially renewable energy. Surprisingly, the role of product reformulations was found to achieve moderate-to-low environmental reductions with waste reductions having low impacts. The majority of reductions was found to be achieved by focusing on sourcing raw materials with lower environmental impacts, product reformulations, and reducing waste generating an aggregated environmental reduction of 46%. Overall, this research provides many insights of the environmental impacts for a range of different confectionery products, especially how actors across the confectionery supply chain can improve the environmental sustainability performance. It is expected the findings from this research will serve as a base for future improvements, research and policies for confectionery manufacturers, supply chain actors, policy makers, and research institutes towards an environmentally sustainable confectionery industry.