
Dr Sara Mahvash Mohammadi
Publications
Background Nocturnal disturbance is frequently observed in dementia and is a major contributor to institutionalisation. Unobtrusive technology that can quantify sleep/wake and determine bed occupancy during the major nocturnal sleep episode may be beneficial for long-term clinical monitoring and the carer. Such technologies have, however, not been validated in older people. Here we assessed the performance of the Withings Sleep Mattress (WSM) in a heterogenous older population to ensure external validity. Method Eighteen participants (65 – 80 years, 10M:8F) completed 7-12 days of sleep/wake monitoring at home prior to an overnight laboratory session. WSM performance was compared to gold-standard (laboratory polysomnography [PSG] with video) and silver standard (actiwatch [AWS] and sleep diary at home). WSM data were downloaded from a third party API and the minute-to-minute sleep/wake timeseries extracted and time-ordered to create a sleep profile. Discontinuities in the timeseries were labelled as ‘missing data’ events. Results Participants contributed 107 nights with WSM and PSG or AWS data. In the laboratory, the overall epoch to epoch agreement (accuracy) of sleep/wake detection of WSM compared to PSG was 0.71 (sensitivity 0.8; specificity 0.45) and to AWS was 0.74 (sensitivity 0.77; specificity 0.53). Visual inspection of video recordings demonstrated that 20 of 21 ‘missing data’ events were true ‘out of bed’ events. These events were always associated with an increase in activity (AWS). At home, all 97 WSM ‘missing data’ events that occurred within the major nocturnal sleep episode defined by sleep diary data, were associated with an increase in activity levels in the AWS data and 36 of these events were also associated with an increase in light levels, indicating that the participant had left the bed. In several participants, data recorded by the WSM during daytime coincided with reported naps in the sleep diary. Conclusion Although WSM cannot reliably distinguish between sleep and wake, the presence/absence of data in WSM seem to be an accurate representation of whether older people are in or out of bed (bed occupancy). Thus, in dementia, this contactless, low-burden technology may be able to provide information about nocturnal disturbances and daytime naps in bed.