Open quantum systems in biology

One of the biggest unresolved mysteries in science is the way living organisms maintain their highly ordered, low entropy, far-from-equilibrium state inside living cells. Already, a number of examples in biology have been discovered that seem to need a helping quantum hand, making use of no-trivial quantum mechanisms, such as superposition, tunnelling and entanglement.

Living organisms behaviour inside living cells

To understand how life is able to maintain the delicate quantum coherences that allow for such behaviour at the molecular scale to have a functional role, we need to model them as open quantum systems strongly coupled to their surrounding environments.

In his 1944 book What is Life?, Erwin Schrödinger argued that organisms stay alive precisely by staving off equilibrium. It does this by taking in low entropy free energy from its environment. In this way, life is able to maintain structure and complexity. However, this ability must be traced down to the molecular level and, ultimately, the quantum domain. So, is there something even more profound going on inside living systems then the mere exploitation of the rules of quantum mechanics?

Contact us

Find us

Address
University of Surrey
Guildford
Surrey
GU2 7XH