Time is of the essence: Revealing the elusive ‘bone clock’ in humans
Start date
01 November 2018End date
31 October 2020Team
Principal investigator
Co-investigator
Professor Debra Skene
Professor of Neuroendocrinology; Section Lead Chronobiology
Biography
Professor Skene is Section Lead of Chronobiology. She has over 25 years of research experience studying the human circadian timing system and has authored over 190 refereed research publications. Her recent research has been funded by the EU FP6, FP7 and H2020 programmes, UK Cross Research Council New Dynamics of Ageing (NDA) Programme, BBSRC (UK), MRC Newton, NIH and Vanda Pharmaceuticals. She is a Royal Society Wolfson Research Merit Award Holder.
Professor Skene is past President of the European Biological Rhythms Society (EBRS) (2012-2019) (Secretary-Treasurer2002-2009; Vice-President 2012-2015) and is a past Vice-President (Basic) of the European Sleep Research Society (ESRS) (2010-2014). In 2009 Prof Skene established the Joint ESRS-EBRS Symposia that take place each year at the biennial ESRS and EBRS Congresses. She is a past Chair of a Gordon Research Conference (Pineal Cell Biology, 2012), currently an Associate Editor of the Journal of Sleep Research and on the Editorial Board of Chronobiology International; Sleep and Biological Rhythms and Clocks & Sleep. She is a past Co-Director of Stockgrand Ltd and Surrey Assays Ltd, University-based companies specialising in the measurement of melatonin and other circadian rhythm markers.
Professor Skene and her team's research is directed towards characterisation and treatment of circadian rhythm sleep disorders as experienced by blind people, shift workers and older people. Her team's findings have led to the optimisation of melatonin (dose, time of administration) and light (wavelength, time of administration) to affect the human circadian clock. Prof Skene has pioneered studies on the spectral sensitivity of the human circadian axis, being one of the first to show the importance of short wavelength blue light. These results have important implications for the design and use of lighting in situations such as the treatment of circadian rhythm sleep disorders, adaptation to shift work as well as in work and living environments.
Currently Professor Skene's research team is studying the links between human circadian clocks, sleep and metabolism in health, circadian disorders and metabolic diseases (shift workers, Type 2 diabetes, liver disease). Investigating the effect of time of day, circadian clock, sleep and food influences on the human metabolome using targeted LC-MS metabolomics is currently a major focus.
Research themes
Find out more about our research at Surrey: