Chloe Hinchliffe

Miss Chloe Hinchliffe

Postgraduate Research Student

Academic and research departments

Centre for Biomedical Engineering.


My research project


Chloe Hanna Hinchliffe, Daniel Emilio Abasolo, H Lilian Tang, Mahinda Yogarajah (2022)Electroencephalogram Connectivity for the Diagnosis of Psychogenic Non-epileptic Seizures

Abstract - Psychogenic non-epileptic seizures (PNES) are attacks that resemble epilepsy but are not associated with epileptic brain activity and are regularly misdiagnosed. The current gold standard method of diagnosis is expensive and complex. Electroencephalogram (EEG) analysis with machine learning could improve this. A k-nearest neighbours (kNN) and support vector machine (SVM) were used to classify EEG connectivity measures from 48 patients with PNES and 29 patients with epilepsy. The synchronisation method-correlation or coherence-and the binarisation threshold were defined through experimentation. Ten network parameters were extracted from the synchronisation matrix. The broad, delta, theta, alpha, beta, gamma, and combined 'all' frequency bands were compared along with three feature selection methods: the full feature set (no selection), light gradient boosting machine (LGBM) and k-Best. Coherence was the highest performing synchronisation method and 0.6 was the best coherence threshold. The highest balanced accuracy was 89.74%, produced by combining all six frequency bands and selecting features with LGBM, classified by the SVM. This method returned a comparatively high accuracy but at a high computation cost. Future research should focus on identifying specific frequency bands and network parameters to reduce this cost. Clinical relevance - This study found that EEG connectivity and machine learning methods can be used to differentiate PNES from epilepsy using interictal recordings to a high accuracy. Thus, this method could be an effective tool in assisting clinicians in PNES diagnosis without a video-EEG recording of a habitual seizure.