
Dr Prakash Ramakrishnan
About
Biography
I am an experienced researcher in the area of electrochemistry. I received PhD in Energy Systems Engineering at DGIST, South Korea. I expertise in both energy storage and conversion applications such as alkaline water electrolyzers (AWEs), lithium-ion (solid-state) batteries, sodium-ion batteries (SIBs), Li-ion batteries (LIBs), lithium-air batteries (LABs), and supercapacitors.
ResearchResearch interests
Alkaline water electrolyzers (AWEs), Lithium-ion (solid-state) batteries, sodium-ion batteries (SIBs), Li-ion batteries (LIBs), Lithium-air batteries (LABs), and Supercapacitors.
Research interests
Alkaline water electrolyzers (AWEs), Lithium-ion (solid-state) batteries, sodium-ion batteries (SIBs), Li-ion batteries (LIBs), Lithium-air batteries (LABs), and Supercapacitors.
Publications
Highlights
[1] A.K. Paidi, W.B. Park, P. Ramakrishnan, S. Lee, J. Lee, K.-S. Lee, H. Ahn, T. Liu, J. Gim, M. Avdeev, M. Pyo, J.I. Sohn, K. Amine, K.-S. Sohn, T.J. Shin, D. Ahn, J. Lu, Unravelling the Nature of the Intrinsic Complex Structure of Binary‐Phase Na‐Layered Oxides, Adv. Mater. n/a (2022) 2202137. doi:10.1002/adma.202202137.
[2] P. Ramakrishnan, J. Lee, S.-H. Baek, The oxygen electrode bifunctionality studies: La2FeNiO6 double perovskite nanoparticles, J. Alloys Compd. 918 (2022) 165492. doi:https://doi.org/10.1016/j.jallcom.2022.165492.
[3] P. Ramakrishnan, K.B. Lee, J.I. Sohn, Ternary metal-based inverse spinel oxide NiCrFeO4 nanoparticles as a highly efficient oxygen evolution catalyst, Appl. Surf. Sci. 566 (2021) 150653. doi:https://doi.org/10.1016/j.apsusc.2021.150653.
[4] P. Ramakrishnan, K. Beom Lee, G.-J. Choi, I.-K. Park, J. Inn Sohn, Porous hollow nanorod structured chromium-substituted inverse spinel compound: An efficient oxygen evolution reaction catalyst, J. Ind. Eng. Chem. 101 (2021) 178–185. doi:https://doi.org/10.1016/j.jiec.2021.06.015.
[5] P. Ramakrishnan, S. Jo, N. Pitipuech, J.I. Sohn, Bifunctionality behavior of phase controlled nickel selenides in alkaline water electrolysis application, Electrochim. Acta. 354 (2020) 136742. doi:https://doi.org/10.1016/j.electacta.2020.136742.
[6] P. Ramakrishnan, H. Im, S.H. Baek, J.I. Sohn, Recent Studies on Bifunctional Perovskite Electrocatalysts in Oxygen Evolution, Oxygen Reduction, and Hydrogen Evolution Reactions under Alkaline Electrolyte, Isr. J. Chem. 59 (2019) 708–719.doi:10.1002/ijch.201900040.
[7] P. Ramakrishnan, J.I. Sohn, J. Sanetuntikul, J.H. Kim, In-situ growth of nitrogen- doped mesoporous carbon nanostructure supported nickel metal nanoparticles for oxygen evolution reaction in an alkaline electrolyte, Electrochim. Acta. 306 (2019) 617–626. doi:10.1016/j.electacta.2019.03.181.
[8] P. Ramakrishnan, H. Kwak, Y.-H. Cho, J.H. Kim, Ionic Conductivity of Ruddlesden- Popper Layered Perovskites (Li2SrTa2O7, Li2SrNb2O7, and Li2CaTa2O7) with Poly(ethylene oxide) as a Composite Solid Electrolyte, ChemElectroChem. 5 (2018) 1265–1271. doi:https://doi.org/10.1002/celc.201800017.
[9] F.C.R. Ramirez, P. Ramakrishnan, Z.P. Flores-Payag, S. Shanmugam, C.A. Binag, Polyaniline and carbon nanotube coated pineapple-polyester blended fabric composites as electrodes for supercapacitors, Synth. Met. 230 (2017) 65–72. doi:https://doi.org/10.1016/j.synthmet.2017.05.005.
[10] P. Ramakrishnan, S. Shanmugam, J.H. Kim, Dual Heteroatom-Doped Carbon Nanofoam-Wrapped Iron Monosulfide Nanoparticles: An Efficient Cathode Catalyst for Li-O 2 Batteries, ChemSusChem. 10 (2017) 1554–1562.doi:10.1002/cssc.201601810.
[11] P. Ramakrishnan, S. Baek, Y. Park, J.H. Kim, Nitrogen and sulfur co-doped metal monochalcogen encapsulated honeycomb like carbon nanostructure as a high performance lithium- ion battery anode material, Carbon N. Y. 115 (2017) 249–260.doi:10.1016/j.carbon.2017.01.011.
[12] P. Ramakrishnan, S. Shanmugam, Nitrogen-doped carbon nanofoam derived from amino acid chelate complex for supercapacitor applications, J. Power Sources. 316(2016) 60–71. doi:10.1016/j.jpowsour.2016.03.061.
[13] P. Ramakrishnan, S. Shanmugam, Nitrogen-Doped Porous Multi-Nano-Channel Nanocarbons for Use in High-Performance Supercapacitor Applications, ACS Sustain.Chem. Eng. 4 (2016) 2439–2448.doi:10.1021/acssuschemeng.6b00289.
[14] P. Ganesan, P. Ramakrishnan, M. Prabu, S. Shanmugam, Nitrogen and Sulfur Co-doped Graphene Supported Cobalt Sulfide Nanoparticles as an Efficient Air Cathode for Zinc-air Battery, Electrochim. Acta. 183 (2015) 63–69. doi:10.1016/j.electacta.2015.05.182.
[15] M. Prabu, P. Ramakrishnan, P. Ganesan, A. Manthiram, S. Shanmugam,LaTi0.65Fe0.35O3-δ nanoparticle-decorated nitrogen-doped carbon nanorods as anadvanced hierarchical air electrode for rechargeable metal-air batteries, Nano Energy.15 (2015) 92–103. doi:10.1016/j.nanoen.2015.04.005.
[16] P. Ramakrishnan, S.-G. Park, S. Shanmugam, Three-dimensional hierarchical nitrogen-doped arch and hollow nanocarbons: morphological influences on supercapacitor applications, J. Mater. Chem. A. 3 (2015) 16242–16250.doi:10.1039/C5TA03384E.
[17] M. Prabu, P. Ramakrishnan, H. Nara, T. Momma, T. Osaka, S. Shanmugam, Zinc–Air Battery: Understanding the Structure and Morphology Changes of Graphene-Supported CoMn2O4 Bifunctional Catalysts Under Practical RechargeableConditions, ACS Appl. Mater. Interfaces. 6 (2014) 16545–16555. doi:10.1021/am5047476.
[18] P. Ramakrishnan, S. Shanmugam, Nitrogen-doped arch and hollow shapednanocarbons for CO2 adsorption, RSC Adv. 4 (2014) 59633–59636. doi:10.1039/C4RA09200G.
[19] P. Ramakrishnan, S. Shanmugam, Electrochemical Performance of CarbonNanorods with Embedded Cobalt Metal Nanoparticles as an Electrode Material forElectrochemical Capacitors, Electrochim. Acta. 125 (2014) 232–240. doi:10.1016/j.electacta.2014.01.103.
[20] M. Prabu, P. Ramakrishnan, S. Shanmugam, CoMn2O4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc–air battery, Electrochem. Commun. 41 (2014) 59–63. doi:10.1016/j.elecom.2014.01.027.
[21] P. Carol, P. Ramakrishnan, B. John, G. Cheruvally, Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries, J. Power Sources. 196 (2011) 10156–10162. doi:https://doi.org/10.1016/j.jpowsour.2011.08.037.