Avishkar Saha

Mr Avishkar Saha


About

My research project

Publications

JAMES ROSS, Oscar Mendez, AVISHKAR JAYANT SAHA, Mark Johnson, Richard Bowden (2022)BEV-SLAM: Building a Globally-Consistent World Map Using Monocular Vision

—The ability to produce large-scale maps for navigation , path planning and other tasks is a crucial step for autonomous agents, but has always been challenging. In this work, we introduce BEV-SLAM, a novel type of graph-based SLAM that aligns semantically-segmented Bird's Eye View (BEV) predictions from monocular cameras. We introduce a novel form of occlusion reasoning into BEV estimation and demonstrate its importance to aid spatial aggregation of BEV predictions. The result is a versatile SLAM system that can operate across arbitrary multi-camera configurations and can be seamlessly integrated with other sensors. We show that the use of multiple cameras significantly increases performance, and achieves lower relative error than high-performance GPS. The resulting system is able to create large, dense, globally-consistent world maps from monocular cameras mounted around an ego vehicle. The maps are metric and correctly-scaled, making them suitable for downstream navigation tasks.

AVISHKAR JAYANT SAHA, Oscar Mendez, Chris Russell , Richard Bowden (2022)" The Pedestrian next to the Lamppost " Adaptive Object Graphs for Better Instantaneous Mapping

Estimating a semantically segmented bird's-eye-view (BEV) map from a single image has become a popular technique for autonomous control and navigation. However, they show an increase in localization error with distance from the camera. While such an increase in error is entirely expected – localization is harder at distance – much of the drop in performance can be attributed to the cues used by current texture-based models, in particular, they make heavy use of object-ground intersections (such as shadows) [9], which become increasingly sparse and uncertain for distant objects. In this work, we address these shortcomings in BEV-mapping by learning the spatial relationship between objects in a scene. We propose a graph neural network which predicts BEV objects from a monocular image by spatially reasoning about an object within the context of other objects. Our approach sets a new state-of-the-art in BEV estimation from monocular images across three large-scale datasets, including a 50% relative improvement for objects on nuScenes.

AVISHKAR JAYANT SAHA, Oscar Mendez, Chris Russell, Richard Bowden (2022)Translating Images into Maps

We approach instantaneous mapping, converting images to a top-down view of the world, as a translation problem. We show how a novel form of transformer network can be used to map from images and video directly to an overhead map or bird's-eye-view (BEV) of the world, in a single end-to-end network. We assume a 1-1 correspondence between a vertical scanline in the image, and rays passing through the camera location in an overhead map. This lets us formulate map generation from an image as a set of sequence-to-sequence translations. Posing the problem as translation allows the network to use the context of the image when interpreting the role of each pixel. This constrained formulation, based upon a strong physical grounding of the problem, leads to a restricted transformer network that is convolutional in the horizontal direction only. The structure allows us to make efficient use of data when training, and obtains state-of-the-art results for instantaneous mapping of three large-scale datasets, including a 15% and 30% relative gain against existing best performing methods on the nuScenes and Argoverse datasets, respectively.