Maheshani Prabodhi Alwis Nanayakkara

Maheshani Prabodhi Alwis Nanayakkara


My research project

My qualifications

2017
BSc Eng Hons in Materials Science and Engineering
University Of Moratuwa

Affiliations and memberships

IEEE
Student membership
IEEE Nuclear and Plasma Sciences Society
Student

News

In the media

Research

Research interests

Research collaborations

My teaching

My publications

Publications

M. P. A. Nanayakkara, L. Matjacic, S. Wood, F. Richheimer, F. A. Castro, S. Jenatsch, S. Züfle, R. Kilbride, A. J. Parnell, M. G. Masteghin, H. M. Thirimanne, A. Nisbet, K. D. G. I. Jayawardena, S. R. P. Silva (2020). Ultra‐Low Dark Current Organic-Inorganic Hybrid X‐Ray Detectors
View abstract View full publication
Organic‐inorganic hybrid semiconductors are an emerging class of materials for direct conversion X‐ray detection due to attractive characteristics such as high sensitivity and the potential to form conformal detectors. However, existing hybrid semiconductor X‐ray detectors display dark currents that are 1000–10 000× higher than industrially relevant values of 1–10 pA mm−2. Herein, ultra‐low dark currents of <10 pA mm−2, under electric fields as high as ≈4 V µm−1, for hybrid X‐ray detectors consisting of bismuth oxide nanoparticles (for enhanced X‐ray attenuation) incorporated into an organic bulk heterojunction consisting of p‐type Poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) and n‐type [6,6]‐Phenyl C71 butyric acid methyl ester (PC70BM) are reported. Such ultra‐low dark currents are realized through the enrichment of the hole selective p‐type organic semiconductor near the anode contact. The resulting detectors demonstrate broadband X‐ray response including an exceptionally high sensitivity of ≈1.5 mC Gy−1 cm−2 and <6% variation in angular dependence response under 6 MV hard X‐rays. The above characteristics in combination with excellent dose linearity, dose rate linearity, and reproducibility over a broad energy range enable these detectors to be developed for medical and industrial applications.
M. P. A. Nanayakkara, M. G. Masteghin, L. Basiricò, I. Fratelli, A. Ciavatti, R. C. Kilbride, S. Jenatsch, T. Webb, F. Richheimer, S. Wood, F. A. Castro, A. J. Parnell, B. Fraboni, K. D. G. I. Jayawardena, S. R. P. Silva (2021). Molecular weight tuning of organic semiconductors for curved organic-inorganic hybrid X-ray detectors
View abstract View full publication
Curved X-ray detectors have the potential to revolutionise diverse sectors due to benefits such as reduced image distortion and vignetting compared to their planar counterparts. While the use of inorganic semiconductors for curved detectors are restricted by their brittle nature, organic-inorganic hybrid semiconductors which incorporated bismuth oxide nanoparticles in an organic bulk heterojunction consisting of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) are considered to be more promising in this regard. However, the influence of the P3HT molecular weight on the mechanical stability of curved, thick X-ray detectors remains less well understood. Herein, high P3HT molecular weights (>40 kDa) are identified to allow increased intermolecular bonding and chain entanglements, resulting in X-ray detectors that can be curved to a radius as low as 1.3 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard dark current of <1 pA mm-2 and a sensitivity of 0.17 C Gy-1 cm-2. This study identifies a crucial missing link in the development of curved detectors, namely the importance of the molecular weight of the polymer semiconductors used.Curved X-ray detectors have the potential to revolutionise diverse sectors due to benefits such as reduced image distortion and vignetting compared to their planar counterparts. While the use of inorganic semiconductors for curved detectors are restricted by their brittle nature, organic-inorganic hybrid semiconductors which incorporated bismuth oxide nanoparticles in an organic bulk heterojunction consisting of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) are considered to be more promising in this regard. However, the influence of the P3HT molecular weight on the mechanical stability of curved, thick X-ray detectors remains less well understood. Herein, high P3HT molecular weights (>40 kDa) are identified to allow increased intermolecular bonding and chain entanglements, resulting in X-ray detectors that can be curved to a radius as low as 1.3 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard dark current of <1 pA mm-2 and a sensitivity of 0.17 C Gy-1 cm-2. This study identifies a crucial missing link in the development of curved detectors, namely the importance of the molecular weight of the polymer semiconductors used.
~μ~μ