Dr Filipe Richheimer

Postgraduate research student


FILIPE MASUCH RIBEIRO RICHHEIMER, David Toth, Bekele Hailegnaw, MARK ALAN BAKER, ROBERT ANDREW DOREY, Ferry Kienberger, Fernando A. Castro, Martin Kaltenbrunner, Markus C. Scharber, Georg Gramse, Sebastian Wood (2022)Ion-driven nanograin formation in early-stage degradation of tri-cation perovskite films, In: Nanoscale Royal Society of Chemistry

The operational stability of organic–inorganic halide perovskite based solar cells is a challenge for widespread commercial adoption. The mobility of ionic species is a key contributor to perovskite instability since ion migration can lead to unfavourable changes in the crystal lattice and ultimately destabilisation of the perovskite phase. Here we study the nanoscale early-stage degradation of mixed-halide mixed-cation perovskite films under operation-like conditions using electrical scanning probe microscopy to investigate the formation of surface nanograin defects. We identify the nanograins as lead iodide and study their formation in ambient and inert environments with various optical, thermal, and electrical stress conditions in order to elucidate the different underlying degradation mechanisms. We find that the intrinsic instability is related to the polycrystalline morphology, where electrical bias stress leads to the build-up of charge at grain boundaries and lateral space charge gradients that destabilise the local perovskite lattice facilitating escape of the organic cation. This mechanism is accelerated by enhanced ionic mobility under optical excitation. Our findings highlight the importance of inhibiting the formation of local charge imbalance, either through compositions preventing ionic redistribution or local grain boundary passivation, in order to extend operational stability in perovskite photovoltaics.

MAHESHANI PRABODHI ALWIS NANAYAKKARA, MATEUS GALLUCCI MASTEGHIN, Laura Basiricò, Ilaria Fratelli, Andrea Ciavatti, Rachel Kilbride, Sandra Jenatsch, THOMAS WEBB, FILIPE MASUCH RICHHEIMER, Sebastian Wood, Fernando A. Castro, Andrew J. Parnell, Beatrice Fraboni, IMALKA JAYAWARDENA, S RAVI PRADIP SILVA (2021)Molecular weight tuning of organic semiconductors for curved organic-inorganic hybrid X-ray detectors, In: Advanced Science Wiley

Curved X-ray detectors have the potential to revolutionise diverse sectors due to benefits such as reduced image distortion and vignetting compared to their planar counterparts. While the use of inorganic semiconductors for curved detectors are restricted by their brittle nature, organic-inorganic hybrid semiconductors which incorporated bismuth oxide nanoparticles in an organic bulk heterojunction consisting of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) are considered to be more promising in this regard. However, the influence of the P3HT molecular weight on the mechanical stability of curved, thick X-ray detectors remains less well understood. Herein, high P3HT molecular weights (>40 kDa) are identified to allow increased intermolecular bonding and chain entanglements, resulting in X-ray detectors that can be curved to a radius as low as 1.3 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard dark current of