Dr Marco Placidi (he/him)


Senior Lecturer in Experimental Fluid Mechanics
BEng, MEng, PhD, CEng, FHEA
+44 (0)1483 684632
01 AB 02
Student feedback and consultation hours: Wednesday 09:00-10:00 am

About

University roles and responsibilities

  • Head of Area 8 Health & Safety Forum
  • Sustainability Fellow at the Institute for Sustainability
  • Sustainability Cluster Research Lead within the School of Mechanical Engineering Science
  • Coordinator of the National Flying Laboratory Centre experience (Cranfield University)
  • Member of the College of Experts for the Faculty of Engineering and Physical Sciences

    My qualifications

    2015
    Ph.D. in Engineering Sciences
    University of Southampton
    2010
    MEng. in Aeronautical Engineering
    Sapienza University of Rome
    2006
    BEng. in Aerospace Engineering
    Sapienza University of Rome

    Affiliations and memberships

    The Royal Aeronautical Society
    MRAeS
    American Physics Society
    Early Career Member
    AIAA
    Member

    Research

    Research interests

    Research projects

    Research collaborations

    Research opportunities

    Supervision

    Postgraduate research supervision

    Teaching

    Publications

    The dataset herein is used in the paper titled "Modelling turbulence in axisymmetric wakes: anapplication to wind turbine wakes", whose abstract is provided below. Further details of the paper are provided in the read_me.m file within this data set.A novel fast-running model is developed to predict the three-dimensional (3D) distribution of turbulent kinetic energy (TKE) in axisymmetric wake flows. This is achieved by mathematically solving the partial differential equation of the TKE transport using the Green's function method. The developed solution reduces to a double integral that can be computed numerically for a wake prescribed by any arbitrary velocity profile. It is shown that the solution can be further simplified to a single integral for wakes with Gaussian-like velocity-deficit profiles. Wind tunnel experiments were performed to compare model results against detailed 3D laser Doppler anemometry data measured within the wake flow of a porous disk subject to a uniform freestream flow. Furthermore, the new model is used to estimate the TKE distribution at the hub-height level of the rotating non-axisymmetric wake of a model wind turbine immersed in a rough-wall boundary layer. Our results show the substantial impact of incoming turbulence on TKE generation in wake flows, an effect not fully captured by existing empirical models. The wind-tunnel data also provide insights into the evolution of important turbulent flow quantities such as turbulent viscosity, mixing length, and the TKE dissipation rate in wake flows. Both mixing length and turbulent viscosity are found to increase with the inflow turbulence and the streamwise distance. The turbulent viscosity however reaches a plateau in the far-wake region. Consistent with the non-equilibrium theory, it is also observed that the normalised energy dissipation rate is not constant and it increases with the streamwise distance.

    Dataset description associated with the article “Turbulence statistics estimation across a step change in roughness via interpretable network-based modelling”, (2024), G. Iacobello, M. Placidi, S. Ding, M. Carpentieri. Files description:- ‘u_timetraces.txt’, ‘v_timetraces.txt’, and ‘w_timetraces.txt' include the instantaneous velocity values for the three velocity components u, v, and w in [m/s].- ‘XYZ_LDA_coordinatees.txt' includes the measurement coordinates (in [m[) with respect to the reference system.- ‘x_coordinatees.txt' and ‘z_coordinatees.txt' include the unique x and z coordinates (streamwise and vertical coordinates, respectively) in [m].

    The time trial bicycle, helmet and mannequin digital models were obtained from a cloud-based open-source library of computer aided design files (Mundy, 2012; Nestell, 2015; Vinayagamoorthy, 2017, respectively), and were modified using SolidWorks 2022. The bicycle geometry features an open five-spoke front wheel, disk rear wheel, vortex generators at the seat tube and a standard time-trial handlebar without aero bar. Certain details of the bicycle, such as the crank, drive train and chain stay were not included since they were considered to have a negligible impact on the flow field, and to avoid part failure during the additive manufacturing process. The wheel hub and pedals were simplified. To guarantee the model was strong and stiff enough to survive the experimental environment, the seat stay and front fork were thickened. Vertical reinforcement features were added to the bicycles to fix the model to a thin structural base. Further details are contained in Arbelo Romero (2023).Please use any CAD software to open the step or stl files. We used a Prusa MINI+ (PLA with 60% infill) to 3D print the model in our work. Mundy, B. (2012). Time-trial bicycle. https://grabcad.com/library/tt-bike. Nestell, W. (2015). Time-trial helmet. https://grabcad.com/library/tt-race-helmet-1. Vinayagamoorthy, D. (2017). Flexi-robot assembled. https://grabcad.com/library/flexi-robot-assembled-1. Arbelo Romero, J. M. (2023). Strategies to obtain an aerodynamic advantage in time trials. MEng Thesis. University of Surrey.

    Marco Placidi, Paul Hayden, Philip Hancock (2023)Dataset for paper "Wind turbine wakes: experimental investigation of two-point correlations and the effect of stable thermal stability”, In: Wind turbine wakes: experimental investigation of two-point correlations and the effect of stable thermal stability University of Surrey

    Abstract from manuscript: "Wind tunnel experiments are performed in both neutrally and stable boundary layers in order to study the effect of thermal stability on the wake of a single turbine and on the wakes of two axially aligned turbines, thereby also showing the influence of the second turbine on the impinging wake. In the undisturbed stable boundary layer, the turbulence length scales are significantly smaller in the vertical and longitudinal directions (up to 50% and 30%, respectively), compared with the neutral flow, while the lateral length scale is unaffected. The reductions are larger still with the imposed inversion of a second stable case, except in the near-wall region. In the neutral case, the length scales in the wake flow of the single turbine are reduced both vertically and laterally (up to 50% and 40% respectively). While there is significant upstream influence of a second turbine (on mean and turbulence quantities), there is virtually no upstream effect on vertical length scales. However, curiously, the presence of the second turbine aids length-scale recovery in both directions. Longitudinally, each turbine contributes to successive reduction in coherence. The effect of stability on the turbulence length scales in the wake flows is non-trivial: at the top of the boundary layer, the reduction in the wall-normal length scale is dominated by the thermal effect, while closer to the wall, the wake processes strongly modulate this reduction. Laterally, the turbines’ rotation promotes asymmetry, while stability opposes this tendency. The longitudinal coherence, significantly reduced by the wake flows, is less affected by the boundary layer’s thermal stability.

    Abhishek Mishra, Matteo Carpentieri, Alan George Robins, Marco Placidi (2024)Experimental study of the turbulent characteristics in the wake of tall building clusters, In: Flow : applications of fluid mechanics4E15 Cambridge University Press

    This manuscript mainly explores the characteristics of turbulence quantities in the wake of tall building clusters of different array size (𝑁N) and building spacing (𝑊𝑆WS) arranged in an aligned and regular grid in the flow direction. Velocity fields are measured in a wind tunnel using three-dimensional laser Doppler anemometry. Results show a delayed recovery of 𝑢𝑟𝑚𝑠urms and 𝑣𝑟𝑚𝑠vrms (defined as the root-mean-square of the streamwise and lateral velocities, respectively) in the wake flow compared with the mean flow. Based on the turbulent fluctuations, the extents of the near-, transition- and far-wake regions in Mishra et al. (Boundary-Layer Meteorol., vol. 189, 2023, pp. 1–25) are revisited. In the near wake, we observe a significant reduction in 𝑢𝑟𝑚𝑠urms and 𝑣𝑟𝑚𝑠vrms in the wake of a 4×44×4 cluster compared with that of a single building. In the transition region, the turbulence intensity magnitudes within the cluster reduce to below their free-stream counterpart; this reduction is associated with the slowly varying nature of the normalised wake deficit in the streamwise direction. The recovery of the root mean square in the far-wake region is observed for 𝑥≥2.5𝑊𝐴x≥2.5WA (where 𝑊𝐴WA is the width of the cluster), with the mutual interaction of the wakes formed behind the individual buildings reducing with an increase in 𝑊𝑆WS, resulting in a faster recovery of the turbulent fluctuations. Finally, wavelet analysis suggests the existence of multi-scale vortex-shedding frequencies downwind of tall building clusters.

    Marco Placidi, Bharathram Ganapathisubramani (2016)On the Effects of Surface Morphology on the Structure of Wall-Turbulence, In: J Peinke, G Kampers, M Oberlack, M Waclawczyk, A Talamelli (eds.), PROGRESS IN TURBULENCE VI165pp. 149-154 Springer Nature

    Experiments were conducted in the fully-rough regime on surfaces with large relative roughness (h/delta approximate to 0.1) generated by regularly distributed LEGO (TM) bricks of uniform height, arranged in different configurations. Measurements were made with high resolution PIV on six different frontal solidities, lambda(F), at fixed plan solidity, lambda(P). Results indicate that the spatial underlying structure of the turbulence across the different surface morphologies is universal in both its shape and orientation in relation to the flow velocity. Harpin packets inclination with respect of the wall is also found to be consistent not only across the different wall surfaces but also when compared to previous studies on smooth walls. Slices of two-point correlations for both streamwise and wall-normal velocity fluctuations and Reynolds shear stresses present a good collapse across the entire y/delta range for all wall morphologies.

    Alexandros Makedonas, Matteo Carpentieri, Marco Placidi Urban boundary layers over dense and tall canopies, In: arXiv.org

    Wind tunnel experiments were carried out on four urban morphologies: two tall canopies with uniform-height and two super-tall canopies with a large variation in element heights (where the maximum element height is more than double the average canopy height, $h_{max}$=2.5 $h_{avg}$). {The average canopy height and packing density were fixed across the surfaces to $h_{avg} = 80$ mm, and $\lambda_{p} = 0.44$, respectively.} A combination of laser doppler anemometry and direct drag measurements were used to calculate and scale the mean velocity profiles {within the boundary layer depth, $\delta$}. In the uniform-height experiment, the high packing density resulted in a `skimming flow' regime with very little flow penetration into the canopy. This led to a surprisingly shallow roughness sublayer ($z\approx1.15h_{avg}$), and a well-defined inertial sublayer above it. {In the heterogeneous-height canopies, despite the same packing density and average height, the flow features were significantly different.} {The height heterogeneity enhanced mixing thus encouraging deep flow penetration into the canopy. A deeper roughness sublayer was found to exist and extend up to just above the tallest element height (corresponding to $z/h_{avg} = 2.85$)}, which was found to be the dominant lengthscale controlling the flow behaviour. {Results points toward the existence of an inertial sublayer for all surfaces considered herein despite the severity of the surface roughness ($\delta/h_{avg} = 3 - 6.25$)}. This contrasts with previous literature.

    H. Santo, P. Hu, B. Agarwal, M. Placidi, J. Zhou (2013)A PROPOSED CONCEPT DESIGN SOLUTION TOWARDS FULL-SCALE MANGANESE NODULE RECOVERY, In: PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013, VOL 33003 Amer Soc Mechanical Engineers

    This paper, a product of an intensive eight-week Lloyd's Register Educational Trust (LRET) Collegium held during July - September 2012 in Southampton, UK, presents an innovative engineering system concept design for manganese nodule recovery. Issues associated with environmental impacts, such as insufficient or lack of transparent impact studies of any potential full-scale seabed mining, are identified as the key obstacles which could lead to public protest, thus prevent the mining project from taking place. Hence, the proposed system introduces an environmentally friendly solution with the innovative concept of a black box, which performs in-situ nodule-sediment separation and waste discharge, and allows recirculation of waste water. The use of a modularised mining system with small, active hydraulic, crawler-type collectors is proposed to minimise environmental footprint and increase system redundancy. This yields a comparable estimated sediment-to-dry nodule ratio with previous studies in sediment plume impact assessment. The proposed system is a big leap towards a more environmentally friendly solution for achieving (the first) full-scale manganese nodule recovery. Together with the intended small production scale of 0.5 millions dry nodules per year, the proposed system can also be considered as a full-scale experiment or field measurement: a platform for full-scale research concurrently, particularly in the area of environmental impacts. The proposed system, intended to spur more interest in environmental impact studies and to be more transparent to the public, could benefit both industry and research institutes, for the benefit of everybody.

    Marco Placidi, Evelien van Bokhorst, Christopher J. Atkin (2016)On the effect of discrete roughness on crossflow instability in very low turbulence environment, In: 8th AIAA Flow Control Conference American Institute of Aeronautics and Astronautics

    Wind tunnel experiments were conducted in a low-turbulence environment (Tu < 0:006%) on the stability of 3D boundary layers. The effect of two different distributions of discrete roughness elements (DREs) on crossfl ow vortices disturbances and their growth was eval uated. As previously reported, DREs are found to be an effective tool in modulating the behaviour of crossfl ow modes. However, the effect of 24μm DREs was found to be weaker than previously thought, possibly due to the low level of environmental disturbances here with. Preliminary results suggest that together with the height of the DREs and their spanwise spacing, their physical distribution across the surface also intimately affects the stability of 3D boundary layers. Finally, crossfl ow vortices are tracked along the chord of the model and their merging is captured. This phenomena is accompanied by a change in the critical wavelength of the dominant mode.

    C. Vanderwel, M. Placidi, B. Ganapathisubramani (2017)Wind resource assessment in heterogeneous terrain, In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences375(2091)pp. 1-14 The Royal Society

    High-resolution particle image velocimetry data obtained in rough-wall boundary layer experiments are re-analysed to examine the influence of surface roughness heterogeneities on wind resource. Two different types of heterogeneities are examined: (i) surfaces with repeating roughness units of the order of the boundary layer thickness (Placidi & Ganapathisubramani. 2015 J. Fluid Mech. 782, 541–566. (doi:10.1017/jfm.2015.552)) and (ii) surfaces with streamwise-aligned elevated strips that mimic adjacent hills and valleys (Vanderwel & Ganapathisubramani. 2015 J. Fluid Mech. 774, 1–12. (doi:10.1017/jfm.2015.228)). For the first case, the data show that the power extraction potential is highly dependent on the surface morphology with a variation of up to 20% in the available wind resource across the different surfaces examined. A strong correlation is shown to exist between the frontal and plan solidities of the rough surfaces and the equivalent wind speed, and hence the wind resource potential. These differences are also found in profiles of Ū2 and Ū3 (where U is the streamwise velocity), which act as proxies for thrust and power output. For the second case, the secondary flows that cause low- and high-momentum pathways when the spacing between adjacent hills is beyond a critical value result in significant variations in wind resource availability. Contour maps of Ū2 and Ū3

    Marco Placidi, Chris J. Atkin (2016)On the effect of different step geometries on disturbance growth in 3D boundary layers, In: Proceedings of the 2016 RAeS Applied Aerodynamics Conference, 19 - 21 July 2016, Bristol, UK Royal Aeronautical Society

    Experiments on the stability of a 3D boundary layer were performed in a very low turbulence wind tunnel (Tu ͌ 0:006%U¥). The effect of different shapes of surface steps (of h = 200 mm) located at 20% chord were investigated by looking into the crossflow modes evolution and growth. Stable crossflow vortices were generated by the means of discrete roughness elements (DREs) positioned upstream of the steps. Preliminary results seem to suggest that the different step geometries have a severe influence on both the maximum disturbance growth and the excitation of the primary mode and its harmonics. These different surface imperfections also seem to play a critical role on the appearance of the non-linear phase of the instability. Finally, the different step geometries are shown to influence the transition front location by up to 9%, which results in performance degradation. The softer and more gradual geometrical disturbance (i.e. Pyramid-type step) was found to minimise the performance loss, providing that each step comprising the complex geometry is designed to be conservatively subcritical.

    M. Placidi, B. Ganapathisubramani (2018)Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure, In: Boundary-Layer Meteorology167(1)pp. 99-121 Springer Verlag

    Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ/h≈10 δ/h≈10, where h is the height of the roughness elements and δ δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ P λP) with variations in frontal density (λ F λF), while the other six cases have varying λ P λP for fixed λ F λF. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541–566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend’s similarity hypothesis with varying λ F λF, however, the agreement is worse for cases with varying λ P λP. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the ‘effective shelter area’ in Raupach and Shaw (Boundary-Layer Meteorol 22:79–90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence play a significant role in assessing outer-layer similarity.

    Marco Placidi, Richard Ashworth, Chris J. Atkin, Stephen Rolston (2023)Effect of environmental disturbances on crossflow instability, In: Experiments in fluids6437 Springer Berlin Heidelberg

    Wind tunnel experiments on the receptivity of three-dimensional boundary layers were performed in a range of freestream turbulence intensities, Tu, from 0.01%—the lowest level ever achieved in this type of work—up to 0.41%. This work confirms that for Tu=0.01%, and presumably below this level, the transition process is dominated by stationary modes. These are receptive to surface roughness and generate Type-I and Type-II secondary instabilities that eventually cause the transition to turbulence. The saturation amplitude of these stationary waves is highly sensitive to the level of environmental disturbances; the former is here recorded to be the highest in the literature, with the latter being the lowest. Travelling modes are still present; however, their influence on the transition process is marginal. At matched surface roughness levels, when the level of environmental disturbance is enhanced to Tu≥0.33%, the travelling modes acquire more importance, strongly influencing the laminar/turbulent transition process, whilst the initial amplitude and growth of the stationary modes are hindered. For this level of Tu, is the interaction of steady and unsteady disturbances that produces highly amplified waves (Type-III), that quickly lead to nonlinear growth and anticipated turbulence. Finally, a simple rule of thumb is proposed, where the transition front was found to move forward by roughly 10% chord for an increase in one order of magnitude in the Tu levels.

    This work was presented at WESC 2019 in Cork.

    Joy Lucy Schmeer, Paul Hayden, Alan Robins, Prashant Kumar, Marco Placidi (2023)Group riding: Cyclists exposure to road vehicle emissions in urban environments, In: Journal of Wind Engineering & Industrial Aerodynamics235

    A series of wind tunnel experiments were conducted in the University of Surrey's Environmental Flow wind tunnel with a 1:50 scale of a typical London street canyon to assess the exposure of cyclists riding in a group to the emissions of polluting vehicles. A propane source emitted from an Ahmed body was used to model a car exhaust and a fast flame ionisation detector was used to measure pollutant concentration around four cyclists for multiple configurations of the source, cyclists, and wind directions. Two cases were investigated with a vehicle driving in front of a line of cyclists and adjacent to them (as if it were overtaking them). In the first case, for small wind incidence, findings confirm that the cyclists exposure decreases exponentially with their distance from the source with a small dependence on wind direction but largely independently of the riders position within the group. For large wind incidences, typical of urban canyons, the rider position within the group becomes more important. For the second set of experiments, with the vehicle positioned adjacent to the riders, it was found to be preferable for a rider to be in front of the group regardless of the distance from the source, as this results in lower exposure to pollutants. This is likely linked with the complex aerodynamic field generated by the group of riders that can trap the vehicle exhaust fumes amongst the cyclists, hence increasing the exposure. This research suggests that group riding should be considered when designing mitigation strategies to minimise cyclists exposure to road traffic pollution within urban environments, where busy and narrow cycle lanes often results in cyclists riding in line.

    Alexandros Makedonas, Matteo Carpentieri , Marco Placidi (2021)Urban boundary layers over dense and tall canopies, In: Boundary-layer Meteorology181pp. 73-93 Springer

    Wind-tunnel experiments were carried out on four urban morpholo-6 gies: two tall canopies with uniform height and two super-tall canopies with a 7 large variation in element heights (where the maximum element height is more 8 than double the average canopy height, h max =2.5h avg). The average canopy 9 height and packing density are fixed across the surfaces to h avg = 80 mm, 10 and λ p = 0.44, respectively. A combination of laser doppler anemometry and 11 direct-drag measurements are used to calculate and scale the mean velocity 12 profiles within the boundary-layer depth δ. In the uniform-height experiment, 13 the high packing density results in a 'skimming flow' regime with very little 14 flow penetration into the canopy. This leads to a surprisingly shallow rough-15 ness sublayer (z ≈ 1.15h avg), and a well-defined inertial sublayer above it. 16 In the heterogeneous-height canopies, despite the same packing density and 17 average height, the flow features are significantly different. The height het-18 erogeneity enhances mixing, thus encouraging deep flow penetration into the 19 canopy. A deeper roughness sublayer is found to exist extending up to just 20 above the tallest element height (corresponding to z/h avg = 2.85), which is 21 found to be the dominant length scale controlling the flow behaviour. Results 22 point toward the existence of a constant stress layer for all surfaces considered 23 herein despite the severity of the surface roughness (δ/h avg = 3 − 6.25). This 24 contrasts with previous literature. 25 Keywords Laser doppler anemometry · Turbulent boundary layers · Urban 26 roughness · Wind-tunnel experiments

    Marco Placidi, Philip Ernest Hancock, Paul Hayden (2023)Wind turbine wakes: experimental investigation of two-point correlations and the effect of stable thermal stability, In: Dataset for paper "Wind turbine wakes: experimental investigation of two-point correlations and the effect of stable thermal stability”

    Wind tunnel experiments are performed in both neutral and stable boundary layers to study the effect of thermal stability on the wake of a single turbine and on the wakes of two axially aligned turbines, thereby also showing the influence of the second turbine on the impinging wake. In the undisturbed stable boundary layers, the turbulence length scales are significantly smaller in the vertical and longitudinal directions (up to 50 % and ≈≈40 %, respectively), compared with the neutral flow, while the lateral length scale is unaffected. The reductions are larger with the imposed inversion of a second stable case, except in the near-wall region. In the neutral case, the length scales in the wake flow of the single turbine are reduced both vertically and laterally (up to 50 % and nearly 40 %, respectively). While there is significant upstream influence of a second turbine (on mean and turbulence quantities), there is virtually no upstream effect on vertical length scales. However, curiously, the presence of the second turbine aids length-scale recovery in both directions. Longitudinally, each turbine contributes to successive reduction in coherence. The effect of stability on the turbulence length scales in the wake flows is non-trivial: at the top of the boundary layer, the reduction in the wall-normal length scale is dominated by the thermal effect, while closer to the wall, the wake processes strongly modulate this reduction. Laterally, the turbines’ rotation promotes asymmetry, while stability opposes this tendency. The longitudinal coherence, significantly reduced by the wake flows, is less affected by the boundary layer's thermal stability.

    Marco Placidi, C. J. Atkin (2016)Effect of different surface roughnesses on crossflow instability, In: DiPaRT 2016 Flight Physics Symposium The Airbus Flight Physics Distributed Partnership R&T
    Marco Placidi, Chris J. Atkin (2018)Effect of imperfection geometry on the stability of 3d boundary layers, In: Proceedings of The 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) (ECCM 6) and the 7th European Conference on Computational Fluid Dynamics (ECFD 7) European Community on Computational Methods in Applied Sciences (ECCOMAS)

    Interest in laminar flow flight due to both economic and environmental factors has recently seen a resurgence (Tufts et al., 2017). Within this topic, the study of the detailed effect of surface excrescences on laminar/turbulent transition has received significant attention (Fage, 1943; Schlichting, 1979). However, most of the previous work has focused on the effect of steps in 2D environments (i.e. in the absence of a pressure gradient), while the effect of steps on a 3D wings has received less attention (Bender et al., 2005). Therefore, experiments on the stability of 3D boundary layers were performed in a very low turbulence wind tunnel by examining the effect of different excrescences, of a height of approximately one-third of the local displacement thickness, δ*, located at 20% chord. Three different stepped geometries (see figure 1) are considered in order to mimic the leading edge to wing box joint characterising new concepts of laminar flow wings. Results show, as expected, that all surface imperfections reduce the extent of the laminar flow region when compared to the case in the absence of a step. However, despite the severity of the excrescences, this reduction is very moderate, which suggests scope to relax current laminar flow wing tolerances. The pyramidal geometry (in figure 1c), with more gradual forward- and aft-facing steps is it found to be optimum, as the performance degradation is the lowest. Results also suggest that the different step geometries have an influence on both the excitation of the primary modes (and its harmonics) and the onset of the nonlinear phase of the instability. Further analysis will follow in the full paper.

    Marco Placidi, Bharathram Ganapathisubramani (2017)Turbulent wall-bounded flows over rigid- and flexible-rough beds, In: Proceedings of the 16th European Turbulence Conference, 21-24 August, 2016, Stockholm, Sweden European Mechanics Society

    Introduction and background Vegetation in both fresh and sea waters is not only ubiquitous in natural habitats but also instrumental for a variety of reasons. It provides the foundation for many food chains [4], contributes to the thriving of fish and corals [6], plays a role in reducing coastal erosion [1] and drastically improves the water quality by producing oxygen [3]. Furthermore, many engineering applications rely upon and would benefit from a better understanding of the flow physics characterising these problems. Despite the numerous reviews [2, 5, 6] that have attempted to capture different aspects of canopy flows over flexible vegetation, a satisfactory understanding of this topic is still elusive. For this reason, a simple controlled experiment aimed at comparing wall-bounded flows over rigid and flexible roughness was designed and carried out. Experimental facility and details Three different surfaces are considered in this work: a smooth wall and two rough-wall cases. The first rough surface is characterised by rigid roughness (i.e. conventional rough wall), while in the second case the flow develops over flexible roughness elements (i.e. aquatic vegetation). Experiments were designed to compare the statistical properties of flexiblerough beds as opposed to their rigid counterpart when the roughness height under wind loading, heff , is matched. The tests were carried out in the Donald Campbell wind tunnel at Imperial College London (freestream turbulence Tu < 0:5%U1). The tunnel working section measures 2:98 m in length, with a 1:37 m x 1:12 m cross section. The conditions were set to represent a nominally zero-pressure gradient at a freestream velocity of 12 ms

    Evelien van Bokhorst, Marco Placidi, Christopher J Atkin (2016)The influence of the spatial frequency content of discrete roughness distributions on the development of the crossflow instability American Institute of Aeronautics and Astronautics

    An experimental investigation on the influence of the spatial frequency content of roughness distributions on the development of crossflow instabilities has been carried out. From previous research it is known that micro roughness elements can have a large influence on the crossflow development. When the spanwise spacing is chosen such that it is the most unstable wavelength (following linear stability analysis), stationary crossflow waves are amplified. While in earlier studies the focus was on the height or spanwise spacing of roughness elements, in the present study it is chosen to vary the shape of the elements. Through the modification of the shape the forcing at the critical wavelength is increased, while the forcing at the harmonics of the critical wavelength is damped. Experiments were carried in the low turbulence wind tunnel at City University London (Tu=0.006%) on a swept flat plate in combination with displacement bodies to create a sufficiently strong favourable pressure gradient. Hot wire measurements across the plate tracked the development of stationary and travelling crossflow waves. Initially, stronger crossflow waves were found for the elements with stronger forcing, while further downstream the effect of forcing diminished. Spatial frequency spectra showed that the stronger forcing at the critical wavelength (via the roughness shape) dominates the response of the flow while low forcing at the harmonics has no notable effect. Additionally, high resolution streamwise hot wire scans showed that the onset of secondary instability is not significantly influenced by the spatial frequency content of the roughness distribution.

    M. Placidi, B. Ganapathisubramani (2015)Effects of frontal and plan solidities on aerodynamic parameters and the roughness sublayer in turbulent boundary layers, In: Journal of Fluid Mechanics782pp. 541-566 Cambridge University Press (CUP)

    Experiments were conducted in the fully rough regime on surfaces with large relative roughness height (h/δ ≈ 0.1, where h is the roughness height and δ is the boundary layer thickness). The surfaces were generated by distributed LEGOr bricks of uniform height, arranged in different configurations. Measurements were made with both floating-element drag balance and high-resolution particle image velocimetry on six configurations with different frontal solidities, λF, at fixed plan solidity, λP, and vice versa, for a total of twelve rough-wall cases. The results indicated that the drag reaches a peak value λF ≈ 0.21 for a constant λP = 0.27, while it monotonically decreases for increasing values of λP for a fixed λF = 0.15. This is in contrast to previous studies in the literature based on cube roughness which show a peak in drag for both λF and λP variations. The influence of surface morphology on the depth of the roughness sublayer (RSL) was also investigated. Its depth was found to be inversely proportional to the roughness length, y0. A decrease in y0 was usually accompanied by a thickening of the RSL and vice versa. Proper orthogonal decomposition (POD) analysis was also employed. The shapes of the most energetic modes calculated using the data across the entire boundary layer were found to be self-similar across the twelve rough-wall cases. However, when the analysis was restricted to the roughness sublayer, differences that depended on the wall morphology were apparent. Moreover, the energy content of the POD modes within the RSL suggested that the effect of increased frontal solidity was to redistribute the energy towards the larger scales (i.e. a larger portion of the energy was within the first few modes), while the opposite was found for variation of plan solidity.

    Shan-Shan Ding, Matteo Carpentieri, Alan George Robins, Marco Placidi (2024)Statistical properties of neutrally and stably stratified boundary layers in response to an abrupt change in surface roughness, In: Journal of Fluid Mechanics986 Cambridge University Press

    We conducted experimental investigations on the effect of stable thermal conditions on rough-wall boundary layers, with a specific focus on their response to abrupt increases in surface roughness. For stably stratified boundary layers, a new analytical relation between the skin-friction coefficient, $C_f$, and the displacement thickness was proposed. Following the sharp roughness change, the overshoot in $C_f$ is slightly enhanced in stably stratified layers when compared with that of neutral boundary layers. Regarding the velocity defect law, we found that the displacement thickness multiplied by $\sqrt{2/C_f}$, performs better than the boundary layer thickness alone when describing the similarity within internal boundary layers for both neutral and stable cases. A non-adjusted region located just beneath the upper edge of the internal boundary layer was observed, with large magnitudes of skewness and kurtosis of streamwise and wall-normal velocity fluctuations for both neutral and stable cases. At a fixed wall-normal location, the greater the thermal stratification, the greater the magnitudes of skewness and kurtosis. Quadrant analysis revealed that the non-adjusted region is characterised by an enhancement/reduction of ejection/sweep events, particularly for stably stratified boundary layers. Spatially, these ejections correspond well with peaks of kurtosis, exhibit stronger intensity and occur more frequently following the abrupt change in surface conditions.

    Cycling is a popular means of transport in cities, this experimental wind tunnel study models groups of cyclists' exposure to road vehicle emissions on a typical London street. Transport for London state that polluting vehicles are responsible for half of London's air pollution and research shows a direct link between poor air quality and increased rates of respiratory diseases. Cyclists are particularly at risk due to their increased inhalation rates and proximity to traffic, therefore expressing the importance and significance of this research. This is the first study to specifically look at the implications of cycling in groups, often the case in congested cycle lanes at peak hours. The results of this project, carried out in the Environmental Flow wind tunnel, confirm that pollutant concentration decreases rapidly with increased separation distance from an exhaust when a rider and vehicle are in line. However, cyclists at the front of a group of in-line riders are subjected to the least pollution when adjacent to polluting vehicles, regardless of their separation distance. Following other riders may therefore increase exposure to air pollution. The increased pollutant concentration observed in groups of riders is likely linked with the complex aerodynamic field generated by upstream cyclists, trapping the vehicle exhaust fumes among the riders. This is combined with the reduced wind speed within groups which is less effective at sweeping the pollutants away. These findings suggest policy makers should construct wider cycle paths, or even better, separate riders from the road. Meanwhile, cyclists should distance themselves from both vehicles and other riders to minimise exhaust emission exposure. Drivers should also be advised to maximise the space they leave cyclists on the road.

    Shanshan Ding, Marco Placidi, Matteo Carpentieri, Alan Robins (2023)Neutrally- and stably-stratified boundary layers adjustments to a step change in surface roughness, In: Experiments in Fluids6486 Springer

    In this work, we study the development of the internal boundary layer (IBL) induced by a surface roughness discontinu-ity, where the downstream surface has a roughness length greater than that upstream. The work is carried out in the EnFlo meteorological wind tunnel, at the University of Surrey, in both thermally neutral and stable cases with varying degrees of stability. For the neutrally-stratified boundary layer, the IBL development in the log-law region shows good agreement with the diffusion model proposed by Panofsky and Dutton (Atmospheric turbulence, Wiley, New York, 1984) provided that a modified origin condition is introduced and its growth rate is dictated by a constant diffusion term. However, the model over-predicts the growth of the IBL in the outer layer, where the IBL depth grows slowly with fetch following a power function with exponent n being 0.61 (whereas the original model prescribes n ≈ 0.8). For the stably-stratified boundary layers, n is found to further reduce as the bulk Richardson number, Ri b , increases. The analysis of the top region of the IBL shows that the slow growth rate is due to a combination of the decay of the diffusion term and a significantly negative mean wall-normal velocity, which transports fluid elements towards the wall. Considering these two effects, a modified diffusion model is proposed which well captures the growth of the IBL for both neutrally and stably-stratified boundary layers. Graphical abstract 1 Introduction

    Abhishek Mishra, Marco Placidi, Matteo Carpentieri, Alan Robins (2023)Wake Characterization of Building Clusters Immersed in Deep Boundary Layers, In: Boundary-Layer Meteorology189(1-3)pp. 163-187 Springer

    Wind tunnel experiments were conducted to understand the effect of building array size (N), aspect ratio (AR), and the spacing between buildings (W S) on the mean structure and decay of their wakes. Arrays of size 3×3, 4×4,and 5×5, AR = 4, 6, and 8, and W S = 0.5W B , 1W B , 2W B and 4W B (where W B is the building width) were considered. Three different wake regimes behind the building clusters were identified: near-, transition-, and far-wake regimes. The results suggest that the spatial extent of these wake regimes is governed by the overall array width (W A). The effects of individual buildings are observed to be dominant in the near-wake regime (0 < x/W A < 0.45) where individual wakes appear behind each building. These wakes are observed to merge in the transition-wake region (0.45 < x/W A < 1.5), forming a combined wake in which the individual contributions are no longer apparent. In the far-wake regime (x/W A > 1.5), clusters' wakes are akin to those developing downwind of a single isolated building. Accordingly, new local and global scaling parameters in the near-and far-wake regimes are introduced. The decay of the centreline velocity deficit is then modelled as a function of the three parameters considered in the experiment.

    Majid Bastankhah, Peter Hydon, Jenna K Zunder, Charles Deebank, Marco Placidi Modelling turbulence in axisymmetric wakes: an application to wind turbine wakes

    A novel fast-running model is developed to predict the three-dimensional (3D) distribution of turbulent kinetic energy (TKE) in axisymmetric wake flows. This is achieved by mathematically solving the partial differential equation of the TKE transport using the Green's function method. The developed solution reduces to a double integral that can be computed numerically for a wake prescribed by any arbitrary velocity profile. It is shown that the solution can be further simplified to a single integral for wakes with Gaussian-like velocity-deficit profiles. Model results are compared and validated against detailed 3D laser Doppler anemometry data measured within the wake flow of a model wind turbine in a laboratory environment. This shows a remarkably good agreement in both the magnitude and shape of the radial TKE profiles at the turbine hub height. The wind-tunnel data also provide insights into the evolution of important turbulent flow quantities such as turbulent viscosity, mixing length, and the TKE dissipation rate within a wind turbine wake.

    Marco Placidi, Matteo Carpentieri, Alan George Robins, Abhishek Mishra (2023)Data for the FUTURE project: Preliminary 'A tunnel' experiments, In: Wake Characterization of Building cluster immersed in deep boundary layers Open Science Framework

    Preliminary wind tunnel experiments for the FUTURE project. Using the 'A tunnel' facility at the EnFlo lab, University of Surrey. Each file consists of the mean velocity values (U, V) measured at different locations (x,y,z) in the wake of a group of tall buildings arranged in a regular array. Additionally, the reference velocity measured at the tunnel inlet, reference temperature and atmospheric pressure are also included in each file.

    Matteo Carpentieri, Shanshan Ding, Alan Robins, Marco Placidi (2023)Data for "ASSURE project: roughness step change wind tunnel experiments, set 1", In: Neutrally- and stably-stratified boundary layers adjustments to a step change in surface roughness Open Science Framework

    The data presented in this dataset has been acquired in the period from 20th June to 09th July 2022 in the EnFlo wind tunnel. Spires with the height of 600 mm were employed to simulate a boundary layer about 550 mm deep. The reference velocity for the presented data is 1.5 m/s for Case 1, 3 and 1.00 m/s for Case 3, 4. The first 11 meters of the floor are covered by offshore roughness elements and the next 7 meters are covered by onshore roughness elements.

    Lazaro Coelho, Marco Placidi, Chris Atkin, Zhengzhong Sun (2016)Experimental Investigation of a Handley Page Triple Slotted Aerofoil, In: Proceedings of the 2016 RAeS Applied Aerodynamics Conference, 19 - 21 July 2016, Bristol, UK Royal Aeronautical Society

    A triple slotted aerofoil following the Handley Page 44F design was tested at City University London T-2 wind tunnel. The model allowed the study of a fixed triple slotted wing as well as investigation of the effects of isolated slots at different locations along the chord. PIV measurements were performed within the chord Reynolds number range in between approximately 200,000-400,000. The model was tested at an angle of attack of 22o. Measurements of mean streamwise velocity, velocity fluctuations and shear stress were analysed. The study shows how an isolated slot is more favourable when it is placed closest to the leading edge, although slow moving fluid regions can still be found close to the trailing edge. Fully attached flow was only achievable by using all three slots. In addition, the fully slotted profile is shown to generate channel exit velocities in the order of 1.4U∞, which highly energise the boundary layer on the suction side.

    M. Placidi, C. Atkin (2017)Surface imperfections effect on the stability of 3D boundary layers, In: Proceedings of European Drag Reduction and Flow Control Meeting Villa Mondragone Monte Porzio Catone (Rome) April 3-6 2017 Springer
    Marco Placidi, Michael Gaster, Chris J. Atkin (2020)Acoustic excitation of Tollmien-Schlichting waves due to localised surface roughness, In: Journal of Fluid Mechanics Cambridge University Press

    Experiments on the receptivity of two-dimensional boundary layers to acoustic disturbances from two-dimensional roughness strips were performed in a low-turbulence wind tunnel on a at plate model. The freestream was subjected to a plane acoustic wave so that a Stokes Layer (SL) was created on the plate, thus generating a Tollmien-Schlichting (T-S) wave through the receptivity process. An improved technique to measure the T-S component is described based on a retracting two-dimensional roughness, which allowed for phase-locked measurements at the acoustic wave frequency to be made. This improved technique enables both protuberances and cavities to be explored in the range 30m < jhj < 750m (equivalent to 0:025 < jhj=B < 0:630 in relative roughness height to the local unperturbed Blasius boundary layer displacement thickness). These depths are designed to cover both the predicted linear and non-linear response of the T-S excitation. Experimentally, cavities had not previously been explored. Results show that a linear regime is identifiable for both positive and negative roughness heights up to 150 m (jhj=B 0:126). The departure from the linear behaviour is, however, dependent on the geometry of the surface imperfection. For cavities of signicant depth, the non-linear behaviour is found to be milder than in the case of protuberances - this is attributed to the flow physics in the near field of the surface features. Nonetheless, results for positive heights agree well with previous theoretical work which predicted a linear disturbance response for small-height perturbations.

    Evelien van Bokhorst, Marco Placidi, Christopher J. Atkin (2016)The influence of the spatial frequency content of discrete roughness distributions on the development of the crossflow instability, In: 8th AIAA Flow Control Conference American Institute of Aeronautics and Astronautics

    An experimental investigation on the influence of the spatial frequency content of roughness distributions on the development of crossflow instabilities has been carried out. From previous research it is known that micro roughness elements can have a large influence on the crossflow development. When the spanwise spacing is chosen such that it is the most unstable wavelength (following linear stability analysis), stationary crossflow waves are amplified. While in earlier studies the focus was on the height or spanwise spacing of roughness elements, in the present study it is chosen to vary the shape of the elements. Through the modification of the shape the forcing at the critical wavelength is increased, while the forcing at the harmonics of the critical wavelength is damped. Experiments were carried in the low turbulence wind tunnel at City University London (Tu=0.006%) on a swept flat plate in combination with displacement bodies to create a sufficiently strong favourable pressure gradient. Hot wire measurements across the plate tracked the development of stationary and travelling crossflow waves. Initially, stronger crossflow waves were found for the elements with stronger forcing, while further downstream the effect of forcing diminished. Spatial frequency spectra showed that the stronger forcing at the critical wavelength (via the roughness shape) dominates the response of the flow while low forcing at the harmonics has no notable effect. Additionally, high resolution streamwise hot wire scans showed that the onset of secondary instability is not significantly influenced by the spatial frequency content of the roughness distribution.

    Additional publications