Jian Liu

Dr Jian Liu


Reader
+44 (0)1483 682713
11 ATI 02

Academic and research departments

Department of Chemical and Process Engineering.

My publications

Publications

Alexander J. Buser, Hrant Gharibyan, MASANORI HANADA, Masazumi Honda, JIAN LIU (2021)Quantum simulation of gauge theory via orbifold lattice, In: Journal of High Energy Physics34 Springer Verlag

We propose a new framework for simulating U(k) Yang-Mills theory on a universal quantum computer. This construction uses the orbifold lattice formulation proposed by Kaplan, Katz, and Unsal, who originally applied it to supersymmetric gauge theories. Our proposed approach yields a novel perspective on quantum simulation of quantum field theories, carrying certain advantages over the usual Kogut-Susskind formulation. We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories, from glueball measurements to AdS/CFT, making use of a variety of quantum information techniques including qubitization, quantum signal processing, Jordan-Lee-Preskill bounds, and shadow tomography. The generalizations to certain supersymmetric Yang-Mills theories appear to be straightforward, providing a path towards the quantum simulation of quantum gravity via holographic duality.

Hrant Gharibyan, Masanori Hanada, Masazumi Honda, Junyu Liu (2021)Toward simulating Superstring/M-theory on a quantum computer, In: Journal of High Energy Physics2021140 Springer Verlag

We present a novel framework for simulating matrix models on a quantum computer. Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics, in an appropriate limit of parameters. Furthermore, for certain states in the Berenstein-Maldacena-Nastase (BMN) matrix model, several supersymmetric quantum field theories dual to superstring/M-theory can be realized on a quantum device. Our prescription consists of four steps: regularization of the Hilbert space, adiabatic state preparation, simulation of real-time dynamics, and measurements. Regularization is performed for the BMN matrix model with the introduction of energy cut-off via the truncation in the Fock space. We use the Wan-Kim algorithm for fast digital adiabatic state preparation to prepare the low-energy eigenstates of this model as well as thermofield double state. Then, we provide an explicit construction for simulating real-time dynamics utilizing techniques of block-encoding, qubitization, and quantum signal processing. Lastly, we present a set of measurements and experiments that can be carried out on a quantum computer to further our understanding of superstring/M-theory beyond analytic results.

Xiaoyan Liu, Guojun Lan, Panpan Su, Lihua Qian, Tomas Ramirez Reina, Liang Wang, Ying Li, Jian Liu (2018)Highly stable Ru nanoparticles incorporated in mesoporous carbon catalysts for production of γ-valerolactone, In: Catalysis Today Elsevier

The hydrogenation of levulinic acid to γ-valerolactone with water as solvent is a crucial reaction for producing fine chemicals. However, the development of highly stable catalysts is still a major challenge. Here, we prepared a Ru nanoparticles incorporated in mesoporous-carbon (Ru-MC) catalyst to achieve high stability in acidic aqueous medium. The Ru-MC showed excellent catalytic performance (12024h-1 turnover frequency) in the hydrogenation of LA-to3 GVL. Compared with Ru supported on mesoporous carbon catalyst (Ru/MC) prepared by conventional wet impregnation method, the Ru-MC showed excellent reusability (more than 6 times) and thermal stability (up to 600 oC). Based on H2-TPR-MS characterization, it was proposed that the incorporated structure significantly increased the interaction between Ru nanoparticles and carbon support, which effectively prevent the leaching and sintering of Ru nanoparticles and contributed to increased high reusability and thermal stability of the Ru-MC.

AO Yazaydin, RQ Snurr, T-H Park, K Koh, J Liu, MD LeVan, AI Benin, P Jakubczak, M Lanuza, DB Galloway, JJ Low, RR Willis (2009)Screening of Metal-Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach, In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY131(51)pp. 18198-+ AMER CHEMICAL SOC
Cameron Alexander Hurd Price, Laura Pastor-Perez, Tomas Ramirez Reina, Jian Liu (2020)Yolk-Shell structured NiCo@SiO₂ nanoreactor for CO₂ upgrading via reverse water-gas shift reaction, In: Catalysis Today Elsevier

This work reports the successful and simplistic synthesis of highly uniform NiCo@SiO₂ yolk@shell catalysts, with their effectiveness towards CO₂ recycling investigated within the RWGS reaction. The engineered microstructure catalysts display high CO₂ conversion levels and a remarkable selectivity for CO as main reaction product across the whole examined temperatures. Interestingly, the selectivity is affected by Ni loading reflecting a close correlation catalytic performance/material structure-composition. Further to this behaviour, the designed nanoreactor exhibits considerable deactivation resistance and performance under reaction cycling conditions and appears to demonstrate the production of larger organic molecules after qualitative analysis of the product gas by mass spectrometry. These results demonstrate the effectiveness of the spatial confinement effect, imbued to the material from its advanced morphology, through its influence of deactivation resistance and control of reactive selectivity.

C-A Hurd Price, L Pastor-Pérez, Tomas Ramirez Reina, Jian Liu (2018)Robust mesoporous bimetallic yolk-shell catalysts for chemical CO2 upgrading via dry reforming of methane, In: Reaction Chemistry & Engineering3pp. 433-436 Royal Society of Chemistry

Here, we report the synthesis of mesoporous ZnO/Ni@m-SiO2 yolk-shell particles. The unique ZnO/Ni@m-SiO2 catalysts demonstrate impressive resistance to sintering and coking for dry reforming of methane (DRM). They also display long term stability with high levels of conversion and selectivity, making this catalyst promising for chemical CO2 upgrading.

The development of catalytic materials for the recycling CO2 through a myriad of available processes is an attractive field, especially given the current climate change. While there is increasing publication in this field, the reported catalysts rarely deviate from the traditionally supported metal nanoparticle morphology, with the most simplistic method of enhancement being the addition of more metals to an already complex composition. Encapsulated catalysts, especially yolk@shell catalysts with hollow voids, offer answers to the most prominent issues faced by this field, coking and sintering, and further potential for more advanced phenomena, for example, the confinement effect, to promote selectivity or offer greater protection against coking and sintering. This work serves to demonstrate the current position of catalyst development in the fields of thermal CO2 reforming and hydrogenation, summarizing the most recent work available and most common metals used for these reactions, and how yolk@shell catalysts can offer superior performance and survivability in thermal CO2 reforming and hydrogenation to the more traditional structure. Furthermore, this work will briefly demonstrate the bespoke nature and highly variable yolk@shell structure. Moreover, this review aims to illuminate the spatial confinement effect and how it enhances yolk@shell structured nanoreactors is presented.

WAW Hassan, J Liu, BJ Howlin, H Ishida, I Hamerton (2016)Examining the influence of bisphenol A on the polymerisation and network properties of an aromatic benzoxazine, In: Polymer88pp. 52-62 ELSEVIER SCI LTD

A series of reactive blends, comprising a commercial benzoxazine monomer, 2,2-bis(3,4-dihydro-3-phenyl-2H-1,3-benzoxazine)propane, and bisphenol A is prepared and characterized. Thermal analysis and dynamic rheology reveal how the introduction of up to 15 wt % bisphenol A lead to a significant increase in reactivity (the exothermic peak maximum of thermal polymerization is reduced from 245 °C to 215 °C), with a small penalty in glass transition temperature (reduction of 15 K), but similar thermal stability (onset of degradation = 283 °C, char yield = 26%). With higher concentrations of bisphenol A (e.g. 25 wt %), a significantly more reactive blend is produced (exothermic peak maximum = 192 °C), but with a significantly lower thermal stability (onset of degradation = 265 °C, char yield = 22%) and glass transition temperature (128 °C). Attempts to produce a cured plaque containing 35 wt % bisphenol A were unsuccessful, due to brittleness. Molecular modelling is used to replicate successfully the glass transition temperatures (measured using thermal analysis) of a range of copolymers.

Cameron Alexander Hurd Price, Tomas Ramirez Reina, Jian Liu (2020)Engineering heterogenous catalysts for chemical CO₂ utilization: Lessons from thermal catalysis and advantages of yolk@shell structured nanoreactors, In: Journal of Energy Chemistry Elsevier

The development of catalytic materials for the recycling CO₂ through a myriad of available processes is an attractive field, especially given the current climate change. While there is increasing publication in this field, the reported catalysts rarely deviate from the traditionally supported metal nanoparticle morphology, with the most simplistic method of enhancement being the addition of more metals to an already complex composition. Encapsulated catalysts, especially yolk@shell catalysts with hollow voids, offer answers to the most prominent issues faced by this field, coking and sintering, and further potential for more advanced phenomena, for example, the confinement effect, to promote selectivity or offer greater protection against coking and sintering. This work serves to demonstrate the current position of catalyst development in the fields of thermal CO₂ reforming and hydrogenation, summarizing the most recent work available and most common metals used for these reactions, and how yolk@shell catalysts can offer superior performance and survivability in thermal CO₂ reforming and hydrogenation to the more traditional structure. Furthermore, this work will briefly demonstrate the bespoke nature and highly variable yolk@shell structure. Moreover, this review aims to illuminate the spatial confinement effect and how it enhances yolk@shell structured nanoreactors is presented.

Xiaomin Ren, Miao Guo, He Li, Chengbin Li, Liang Yu, Jian Liu, Qihua Yang (2019)Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations, In: Angewandte Chemie (International ed.)58(41)pp. 14483-14488

It is a challenging task to promote the activity and selectivity of a catalyst via precisely engineering the microenvironment, an important factor related with the catalytic performance of natural catalysts. Motivated by the water effect in promoting the catalytic activity explored in this work, a nanoreactor modified with phosphine ligand enabled the efficient hydrogenation of benzoic acid (BA) over Ru nanoparticles (NPs) in organic solvent under mild conditions, which cannot be achieved in unmodified nanoreactors. Both density functional theory (DFT) calculations and catalytic performance tests showed that the phosphine ligands can manipulate the adsorption strength of BA on Ru NPs by tuning the surface properties as well as preferentially interacting with the carboxyl of BA. The insights obtained in the present study provide a novel concept of nanoreactor design by anchoring ligands near catalytically active centers. A nanoreactor modified with a phosphine ligand enabled the efficient hydrogenation of benzoic acid (BA) over Ru nanoparticles in organic solvent under mild conditions. This cannot be achieved in unmodified nanoreactors; the phosphine ligands can manipulate the adsorption strength of BA on Ru NPs.

Zhengbin Tian, Chao Dong, Qun Yu, Run-Ping Ye, Melis S Duyar, Jian Liu, Heqing Jiang, Guang-Hui Wang (2020)A universal nanoreactor strategy for scalable supported ultrafine bimetallic nanoparticles synthesis, In: Materials today (Kidlington, England)40pp. 72-81 Elsevier Ltd

Supported bimetallic catalysts have become an important class of catalysts in heterogeneous catalysis. Although well-defined bimetallic nanoparticles (BNPs) can be synthesized by seeded-growth in liquid phase, uniform deposition of these BNPs onto porous supports is very challenging. Here, we develop a universal nanoreactor strategy to directly fabricate the PdAu BNPs in the solid support of coral-like nitrogen-doped mesoporous polymer (NMP) with uniform dispersion in a large scale. This strategy is based on coordination chemistry to introduce the high-quality seeds of Pd nanoclusters and the Au ions into the NMP, and thus to be used as a nanoreactor for seeded growth of PdAu BNPs in solid state during thermal reduction. Many other supported Pd-based BNPs (diameters ranging from 2 to 3 nm) have also been successfully synthesized by adoption of this strategy, including PdRu, PdCo, PdNi, PdZn, PdAg and PdCu BNPs. As an example, the as-synthesized Pd1Au1/4 sample shows enhanced catalytic performance in formic acid (FA) dehydrogenation compared with the monometallic analogues, indicating the synergistic effect between Pd and Au. In addition, the Pd1Au1/4 product is molded into monolith without any binders due to its coral-like structure. The Pd1Au1/4 monolith shows considerable activity in FA dehydrogenation with a turnover frequency (TOF) value of 3684 h−1 at 333 K, which is recycled five times without changes in activity. We believe that the nanoreactor strategy provides an effective route to synthesize various supported bimetallic catalysts that have potential for applications in green and sustainable catalytic processes.

Run-Ping Ye, Lin Liao, Tomas Ramirez Reina, Jiaxu Liu, Durgaiah Chevella, Yonggang Jin, Maohong Fan, Jian Liu (2021)Engineering Ni/SiO₂ catalysts for enhanced CO₂ methanation, In: Fuel285119151 Elsevier

The CO₂ methanation is an important process in coal-to-gas, power-to-gas and CO₂ removal for spacecraft. Recently, metal-organic framework (MOF) derivatives have been demonstrated as high-performance catalysts for CO₂ upgrading processes. However, due to the high costs and low stability of MOF derivatives, it still remains challenge for the development of alternative synthesis methods avoiding MOF precursors. In this work, we present the sol-gel method for loading Ni-MOF to silica support in two-steps. Upon modifying the procedure, a more simplified one-step sol-gel method has been developed. Furthermore, the obtained Ni/SiO₂ catalyst still exhibits great catalytic performance with a CO₂ conversion of 77.2% and considerable CH4 selectivity of ~100% during a stability test for 52 h under a low temperature of 310 °C and high GHSV of 20,000 mL·g−1·h−1. Therefore, this work provides a ground-breaking direct strategy for loading MOF derived catalysts, and might shed a light on the preparation of highly dispersed Ni/SiO₂ catalyst.

Yash Boyjoo, Haodong Shi, Emilia Olsson, Qiong Cai, Zhong‐Shuai Wu, Jian Liu, Gao Qing (Max) Lu (2020)Molecular‐Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries, In: Advanced energy materials10(20)2000651 Wiley

Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2.

J. J Liu, J Lee, H Watanabe, S Nishimura, G. X Zhang, J Wu, P. M Walker, P. H Regan, P. -A Söderström, H Kanaoka, Z Korkulu, P. S Lee, A Yagi, A. C Dai, F. R Xu, D. S Ahn, T Alharbi, H Baba, F Browne, A. M Bruce, R. J Carroll, K. Y Chae, Zs Dombradi, P Doornenbal, A Estrade, N Fukuda, C Griffin, E Ideguchi, N Inabe, T Isobe, S Kanaya, I Kojouharov, F. G Kondev, T Kubo, S Kubono, N Kurz, I Kuti, S Lalkovski, G. J Lane, C. S Lee, E. J Lee, G Lorusso, G Lotay, C. -B Moon, I Nishizuka, C. R Nita, A Odahara, Z Patel, V. H Phong, Zs Podolyák, O. J Roberts, H Sakurai, H Schaffner, C. M Shand, Y Shimizu, T Sumikama, H Suzuki, H Takeda, S Terashima, Zs Vajta, J. J Valiente-Dobón, Z. Y Xu (2020)Isomeric and beta-decay spectroscopy of 173,174Ho, In: Physical Review. C, Nuclear Physics102(2) American Physical Society (APS)

β-decay spectroscopy of 173,174Ho (Z = 67, N = 106,107) was conducted at Radioactive Isotope Beam Factory at RIKEN by using in-flight fission of a 345-MeV/u 238U primary beam. A previously unreported isomeric state at 405 keV with half-life of 3.7(12) μs and a spin and parity of (3/2+) is identified in 173Ho. Moreover, a new state with a spin and parity of 9- was discovered in 174Er. The experimental log ft values of 5.84(20) and 5.25(18) suggest an allowed-hindered β decay from the ground state of 174Ho to the Kπ = 8- isomeric state in 174Er. Configuration-constrained potential energy surface (PES) calculations were performed and the predictions are in reasonable agreement with the experimental results.

N Paul, A Obertelli, C Bertulani, A Corsi, P Doornebal, J. L. Rodriguez-Sanchez, G Authelet, H Baba, D Calvet, F Chateau, S Chen, A Delbart, J. M Gheller, A Giganon, A Gilibert, T Isobe, V Lapoux, M Matsushita, S Momiyama, T Motobayashi, M Niikura, H Otsu, C Peron, A Peyaud, E. C Pollaco, J. Y Rousse, H Sakurai, C Santamaria, M Sasano, Y Shiga, D Steppenbeck, S Takeuchi, R Taniuchi, T Uesaka, H Wang, K Yoneda, T Ando, T Arici, A Blazhev, F Browne, A. M. Bruce, Richard Carroll, L. X. Chung, M. L Cortes, M Dewald, B Ding, Zs Dombradi, F Flavigny, S Franchoo, F Giacoppo, M Gorska, A Gottardo, Katarzyna Hadynska-Klek, Z Korkulu, S Koyama, Y Kubota, A Jungclaus, J Lee, M Lettmann, B.D Linh, J Liu, Z Liu, C Lizarazo, C Louchart, R Lozeva, K Matsui, T Miyazaki, K Moschner, S Nagamine, N Nakatsuka, C Nita, S Nishimura, C.R Nobs, L Olivier, S Ota, Z Patel, Zsolt Podolyak, Matthias Rudigier, E Sahin, T. Y Saito, Callum Shand, P. A Soderstrom, I. G. Stefan, T Sumikama, D Suzuki, R Orlandi, V Vaquero, Zs Vajta, V Werner, K Wimmer, J Wu, Z Xu (2019)Prominence of Pairing in Inclusive (p,2p) and (p,pn) Cross Sections from Neutron-Rich Nuclei, In: Physical Review Letters American Physical Society

Fifty-five inclusive single nucleon removal cross sections from medium mass neutron-rich nuclei impinging on a hydrogen target at 250 MeV/nucleon were measured at the RIKEN Radioactive Isotope Beam Factory. Systematically higher cross sections are found for proton removal from nuclei with an even number of protons compared to odd-proton number projectiles for a given neutron separation energy. Neutron removal cross sections display no even-odd splitting contrary to nuclear cascade model predictions. Both effects are understood through simple considerations of neutron separation energies and bound state level densities originating in pairing correlations in the daughter nuclei. These conclusions are supported by comparison with semi-microscopic model predictions,highlighting the enhanced role of low-lying level densities in nucleon removal cross sections from loosely-bound nuclei.

J Liu, NP Wickramaratne, SZ Qiao, M Jaroniec (2015)Molecular-based design and emerging applications of nanoporous carbon spheres, In: Nature Materials14pp. 763-774 Macmillan

Over the past decade, considerable progress has been made in the synthesis and applications of nanoporous carbon spheres ranging in size from nanometres to micrometres. This Review presents the primary techniques for preparing nanoporous carbon spheres and the seminal research that has inspired their development, presented potential applications and uncovered future challenges. First we provide an overview of the synthesis techniques, including the Stöber method and those based on templating, self-assembly, emulsion and hydrothermal carbonization, with special emphasis on the design and functionalization of nanoporous carbon spheres at the molecular level. Next, we cover the key applications of these spheres, including adsorption, catalysis, separation, energy storage and biomedicine — all of which might benefit from the regular geometry, good liquidity, tunable porosity and controllable particle-size distribution offered by nanoporous carbon spheres. Finally, we present the current challenges and opportunities in the development and commercial applications of nanoporous carbon spheres.

Cameron Price, Emily Earles, Laura Pastor-Perez, Jian Liu, Tomas Ramirez Reina (2018)Advantages of Yolk Shell Catalysts for the DRM: A Comparison of Ni/ZnO@SiO2 vs. Ni/CeO2 and Ni/Al2O3., In: Chemistry1(1)pp. 3-16 MDPI

Encapsulation of metal nanoparticles is a leading technique used to inhibit the main deactivation mechanisms in dry reforming of methane reaction (DRM): Carbon formation and Sintering. Ni catalysts (15%) supported on alumina (Al2O3) and ceria (CeO2) have shown they are no exception to this analysis. The alumina supported catalysts experienced graphitic carbonaceous deposits, whilst the ceria showed considerable sintering over 15 h of DRM reaction. The effect of encapsulation compared to that of the performance of uncoated catalysts for DRM reaction has been examined at different temperatures, before conducting longer stability tests. The encapsulation of Ni/ZnO cores in silica (SiO2) leads to advantageous conversion of both CO2 and CH4 at high temperatures compared to its uncoated alternatives. This work showcases the significance of the encapsulation process and its overall effects on the catalytic performance in chemical CO2 recycling via DRM.

Tomas Ramirez Reina, J. Liu, S. Ivanova (2020)Editorial: Catalysis by Gold for Gas & Liquid Phase Reactions: A Golden Future for Environmental Catalysis., In: Frontiers in Chemistry Frontiers In